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Abstract. The randomness of disc packings, generated by random sequential adsorption (RSA),
random packing under gravity (RPG) and Mason packing (MP) which gives a packing density
close to that of theRSA packing, has been analysed, based on the Delaunay tessellation, and is
evaluated at two levels, i.e. the randomness at individual subunit level which relates to the con-
struction of a triangle from a given edge length distribution and the randomness at network level
which relates to the connection between triangles from a given triangle frequency distribution.
The Delaunay tessellation itself is also analysed and its almost perfect randomness at the two
levels is demonstrated, which verifies the proposed approach and provides a random reference
system for the present analysis. It is found that (i) the construction of a triangle subunit is not
random for theRSA, MP and RPG packings, with the degree of randomness decreasing from the
RSA to MP and then toRPG packing; (ii) the connection of triangular subunits in the network is
almost perfectly random for theRSA packing, acceptable for theMP packing and not good for the
RPG packing. Packing method is an important factor governing the randomness of disc packings.

Nomenclature

a, i, j, k integers
d diameter of discs
Ei fractional number of theith type of edge
E1ik the number of thekth type of edge in anith type of triangle
l edge length
lmin the shortest length of edges
m the number of the types of triangles
n the number of the types of edges
NT the total number of triangles
Nij fractional number of the connections between theith andj th types of triangles
Nc

ij the calculated value ofNij by equation (5)
Nm

ij the measured value ofNij

SSR sum of squared residuals
Ti fractional number of theith type of triangles
T1ijk fractional number of the triangles constructed by theith, j th andkth types of

edges
T c

1ijk calculatedT1ijk

T m
1ijk measuredT1ijk

εij absolute difference betweenNc
ij andNm

ij

ε̄ average value ofεij .
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1. Introduction

Random packing of spheres has been studied quite extensively for models to represent the
structure of liquids and glasses [1, 2] or to investigate such phenomena as fluid flow [3–5],
electrical conductivity [6–8] and force transmission [9] in packed particles. This subject
has many industrial applications as listed by German [10]. However, the randomness of
the structure of particle packings, which is not completely random as it implies, has not
been tested systematically. Proper quantification of the randomness of particle packing is
important to the successful application of a ‘random’ model to practical problem solving.
In fact, the evaluation of the ‘degree of randomness’ has been known as one of the main
problems in the area of particle or disc packing [11].

Two methods are widely used in the structural analysis of particle or disc packing,
namely the Voronoi and Delaunay tessellations [12, 13]. Consequently, the structural
analysis can be considered from two aspects: the properties of individual Voronoi or
Delaunay subunits and the properties of these combined or connected subunits. The
geometrical properties of the Voronoi subunit such as the side number distribution,
edge length distribution etc, have been studied extensively, particularly for disc (2D)
packings [14, 15]. However, it seems that to date no detailed analysis has been carried out
on the connection of the subunits. This is probably because of the complicated topology
of the Voronoi tessellation as compared to that of the Delaunay tessellation. With this
realization, Mellor investigated the randomness of Finney’s sphere (3D) packing applying
the Delaunay tessellation [16]. Two levels of randomness are identified and analysed,
which are, respectively, related to the construction of individual subunits, i.e. tetrahedra for
the 3D situation, and the connection between these subunits. He found that for Finney’s
packing, the construction of tetrahedra is not randomly combined from the measured edge
length distribution, but the connection between tetrahedra are reasonably random. His work
appears to be the first in the literature to discuss the randomness in such a quantitative and
detailed way. As pointed out by Finney [17], the work in this direction deserves more
attention in future studies.

In this paper we will extend Mellor’s work by investigating the effect of packing method
on the randomness of disc packing. The method for analysing the randomness for disc
packing will first be rationalized and generalized. Then, the randomness of disc packings
obtained by various computer simulation algorithms will be analysed.

2. Method for analysis

According to the Delaunay tessellation, a packing of discs can be divided into a certain type
of triangular network obtained by connecting the centres of adjacent discs. The randomness
of the packing can then be analysed at two levels. The first is the randomness at individual
subunit level which relates to the construction of a triangle from a given edge length
distribution. The second is the randomness at network level which relates to the connection
between triangles from a given triangle frequency distribution. In the following, the general
definition of the randomness at the two levels will be provided.

For convenience, an edge length frequency distribution is first discretized into a number
of types of edges. Letn represent the number of the types of the edges andEi the fractional
number, i.e. the frequency of theith type of edge with the following normalization condition:

n∑
i=1

Ei = 1 . (1)



Effect of packing method on the randomness of disc packings 2673

A triangle consists of three edges. LetT1ijk be the fractional number of triangles constructed
by thei, j andkth types of edges.T1ijk is obviously dependent onEi . In fact, if triangles
are constructed as a result of the random combination of any three types of edges,T1ijk

should theoretically be related toEi and given as the respective terms of the expansion
n∑

i=1

n∑
j=i

n∑
k=j

T1ijk =
( n∑

i=1

Ei

)3

(2a)

or

T1ijk =


E3

i (i = j = k)

3E2
i Ek (i = j 6= k)

3EiE
2
j (i 6= j = k)

6EiEjEk (i 6= j 6= k) .

(2b)

It seems that the randomness at the individual subunit level can be analysed, based on this
equation. However, since this equation does not take into account the geometrical constraint
in forming a packing, this analysis is only applicable to dense packing, as originally proposed
by Mellor [16], and cannot be used generally. This can be understood from the fact that the
construction of a triangle must satisfy the geometric constraint that the sum of the lengths
of two edges is greater than the length of the other. The random combination of three edges
from a given edge length distribution may not always give a triangle that physically exists
if the edge length varies in a large range. In this case, the discussion of the randomness at
individual subunit level is not meaningful if it is based on equation (2) without modification.
To overcome this deficiency, the maximum entropy method as used by other investigators
in the analysis of the Voronoi structure [18] was employed in this study. For the present
problem, the entropyS is defined as

S = −
n∑

i=1

n∑
j=i

n∑
k=j

T1ijk ln T1ijk . (3a)

The most random distribution ofT1ijk can then be obtained by maximizing the entropy,
subject to the constraints

3Ea = T1aaa +
a∑

i=1

T1iaa +
n∑

k=a+1

T1aak +
n∑

j=a+1

n∑
k=j

T1ajk +
a∑

i=1

n∑
k=a+1

T1iak +
a∑

i=1

a∑
j=i

T1ija

(a = 1, 2, . . . , n) (3b)

and
n∑

i=1

n∑
j=i

n∑
k=j

T1ijk = 1 . (3c)

Equation (3b) means that the calculated triangular distribution will always provide the same
edge length distribution as that given and equation (3c) is the normalization condition. By
definition, T1ijk should be greater than or equal to zero.T1ijk = 0 should occur when the
combination of three edges gives a triangle which does not satisfy the above geometrical
constraint. The types of triangles which do not exist physically can be readily determined
for a given (discretized) edge length distribution. In this way, in the evaluation ofT1ijk,
not only the edge length distribution but also the geometric constraint have been taken
into account. The randomness at individual subunit level can then be analysed, based on
equation (3), as used in this work. The construction of triangles is said to be of perfect
randomness at individual subunit level ifT1ijk can be evaluated by this method.
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Now we will consider the randomness at network level. Different combinations of edges
will give different triangles. The number of the types of trianglesm should be linked with
n, as given bym = (

n+2
3

)
. Let Ti be the number fraction of theith type of triangle with the

following normalization condition:
m∑

i=1

Ti = 1 . (4)

Then the number of connections between trianglei and trianglej will depend onTi andTj

and on whether there is any type of common edge in the two types of triangles. Assume
that a packing is composed ofNT triangles (NT can be determined from the number of
discs according to Euler’s theorem). IfE1ik is the number of thekth type of edge in
the ith type of triangle, thenNT TiE1ik will be the total number of thekth type of edges
in the ith type of triangle. If the connection between theith and j th types of triangles
is random, the contribution of thekth type of edge to this connection should be equal
to (NT TiE1ik) × (NT TjE1jk)/

∑m
i=1(NT TiE1ik). Note thatk varies from 1 ton, i.e. the

connection between theith andj th types of triangles can be made by all types of edges,
and the total number of connections between triangles is 3NT . The fractional number of
the connection between theith andj th types of trianglesNij should then be given by the
following equation:

Nij = 1

3

n∑
k=1

(
TiE1ikTjE1jk∑m

i=1 TiE1ik

)
. (5)

The present analysis of the randomness at network level will be based on this equation. In
particular, the connection between triangles from a given triangle frequency distribution is
said to be perfectly random if the connection between any two types of triangles can be
evaluated by equation (5).

As will be discussed later, the use of the above approach allows one to discuss the
randomness of a2D disc packing in a quantitative manner. This approach can also be
extended to a3D sphere packing. From this point of view, the analysis of Mellor [16]
is concerned with the simplest case because only two types of edges were employed in
his analysis. Furthermore, Mellor’s definition of the randomness at individual level, like
that related to equation (2), is only applicable to dense packing with a narrow edge length
distribution and cannot be used as a general method. As will be discussed in section 4.1,
this deficiency can be satisfactorily overcome by the above proposed entropy approach.

3. Computer simulation of disc packing

For convenience, the structural information necessary for the present analysis was generated
by computer simulation. Three simulation algorithms were employed, which represent
different packing methods and hence structures. These methods are the random sequential
adsorption (RSA) [19], the random packing under gravity (RPG) [20, 21] and the Mason
packing (MP) [22]. The simulation algorithms have been detailed in a study of the pore
structure of disc packing [23], or in the literature [19–22], and will therefore not be repeated
here.

The packing density obtained in our simulation is 0.543 for theRSA and 0.840 for theRPG

packing. These values agree well with those obtained by other investigators [19, 20, 24]. For
the MP algorithm, packing density varies theoretically from zero to 0.906, depending on the
growth state of discs [22]. However, in order to make it comparable with theRSA packing,
only the packing with packing density equal to 0.536 was studied in this work. Moreover,
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a pure Delaunay tessellation (DT) constructed by random points was also investigated in
detail in order to quantify the possible effect of the standard technique to obtain a Delaunay
tessellation on the randomness. This resulting Delaunay tessellation could be regarded as
an extremeRSA or MP packing when the disc diameter is equal to zero.

Therefore, in total, four simulation algorithms were used in this work. Figure 1 shows
the packing structures and their Delaunay tessellations obtained by these algorithms. The
structures were analysed numerically in detail to obtain the necessary statistical information
about edge length distribution, triangle frequency distribution, connection between triangles,
etc, for the present analysis which was aimed at elucidating the effect of packing method
on the randomness of disc packings.

Figure 1. Typical packing structures and Delaunay subunits for (a) DT, (b) RSA, (c) RPG and (d)
MP packings.

4. Results and discussion

4.1. The randomness at individual subunit level

Figure 2 shows the edge length distributions corresponding, respectively, to theDT, RSA, RPG

andMP packings. To examine the randomness at individual subunit level, these distribution
functions were discretized andEi determined. By maximizing the entropy defined by
equation (3), the triangle frequency distributionT1ijk could be determined, which were then
compared with those measured. If the construction of the triangles from the edge length
distribution for a packing is random, the measured and calculatedT1ijk should match each
other well. Otherwise, it is not random. The difference between the measured and calculated
T1ijk is obviously a measure of the degree of randomness.

To evaluate the randomness at individual subunit level, four types of edges were given,
giving 20 types of triangles. For theDT and RSA packings, the edge intervals in terms of
dimensionless edge (refer to figure 2) are equally distributed from the minimum (equal to
unity) to maximum (equal to 370.8256 for theDT and 1.9977 for theRSA packing). This
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Figure 2. Edge length distributions for (a) DT, (b) RSA, (c) RPG and (d) MP packings.

treatment was also applied to theRPG andMP packings for the largest three edge intervals,
with the maximums, respectively, equal to 1.4884 for theRPG and 3.3837 forMP packing.
However, the smallest edge interval was set to be from unity to 1.001 for theRPG and to
1.0001 for MP packing. The reason for this treatment is that the length of the majority
of edges for theRPG and MP packings is distributed within a narrow range (figures 2(c)
and (d)). It was considered, after some trials, that this discretization could lead to more
meaningful results. This treatment was also adopted in the analysis of the randomness at
network level.

Figure 3 shows the comparison between the calculated and measured triangle frequency
distributions for these packings. It can be observed from figure 3(a) that for the DT

packing, the calculatedT1ijk are in good agreement with the measuredT1ijk, suggesting
that the construction of triangles for this packing is almost of perfect randomness. This
result is expected since theDT packing is essentially a random system without any packing
constraints. However, as observed from other figures (in figure 3), the calculatedT1ijk are
significantly different from the measuredT1ijk. This suggests that for theRSA, RPG andMP

packings, the construction of the individual triangle is not random. To be more quantitative,
we used the sum of squared residuals, i.e.SSR= ∑n

i=1

∑n
j=i

∑n
k=j (T

c
1ijk − T m

1ijk)
2 in this

analysis. Figure 4 shows the results, which indicate that the degree of randomness varies
for the four packings. In summary, the degree of randomness at an individual subunit level
is excellent for theDT packing but gets worse from theRSA to theMP and finally to theRPG

packing.
The degree of randomness is considered to be related to the packing constraints imposed

on each type of packing. As mentioned above, there is no packing constraint in theDT

packing. It is therefore expected that it should give the highest degree of randomness. For
the RSA packing, the centre of each disc is chosen at random and the only determinant
constraint is the steric exclusion [24]. However, for theMP packing, in addition to the
constraint of the steric exclusion, the coordinates of each disc are affected by contacting
neighbours during the growth process of discs [22]. As a consequence, theMP packing
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Figure 3. Comparison between the measured
and calculated triangle frequency distributions
for (a) DT, (b) RSA, (c) RPG and (d) MP

packings.

Figure 4. Effects of packing methods on the sum of
squared residuals in evaluatingT1ijk .
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Figure 5. Comparison between the calculated and measured triangle frequency distributions for
(a) RSA and (b) RPG packings (based on equation (2)).

gives a lower degree of randomness than theRSA packing. As for theRPG packing, the
effect of gravity implies that a disc must be supported by two discs underneath and it will
also provide such support to at least one disc. Consequently, the majority of measured
triangles in theRPG packing are isosceles triangles (see figure 3(c)). Because of this strong
packing constraint, the measuredT1ijk are quite different from the calculatedT1ijk, giving
the lowest degree of randomness. The above consideration is also applied to the analysis of
the randomness at the network level. In fact, it is considered that the packing method affects
the degree of randomness of disc packing mainly through its imposed packing constraints.

It should be emphasized that in this work we only considered theMP packing with a
packing density close to that of theRSA packing. The randomness of theMP packing varies
with packing density, i.e. the growth process of discs. The above comparison between
the MP and RSA packings should therefore not be generalized. Further study is probably
necessary in order to fully establish the relationship between the randomness of theMP

packing and packing density.
As mentioned above,T1ijk may also be evaluated by equation (2) and the calculated

T1ijk can also be used for the analysis of randomness. In fact, such analysis was carried
out for theRSA andRPG packings with narrow edge length distribution. Figure 5 shows the
results, obtained when the edge length distribution was discretized into five intervals. These
intervals are equally distributed from minimum to maximum for theRSA packing. For the
RPG packing, for the reason mentioned above, the equally distributed intervals were only
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made for the large four intervals and the smallest interval was taken from unity to 1.001.
It can be seen from figure 5 that the calculatedT1ijk are different from the measuredT1ijk,
so that the construction of triangles for the two packings is not random. This remark is
obviously in agreement with that obtained by the maximum entropy method. Note that the
results in figure 5 are not necessarily the same as those in figure 3 as they are obtained
using different approaches. It was also observed that for theRSA packing, if the number
of intervals is smaller than five, the agreement between the measured and calculatedT1ijk

by equation (2) can be significantly improved. A large number of intervals would lead to
a more conclusive result as long as the number of discs involved in the analysis is large
enough.

However, it should be pointed out that the analysis based on equation (2) is not
applicable to theDT andMP packings. As seen from figure 2, the length of edges for the two
packings varies within such a wide range that the random combinations of three edges may
not always lead to triangles which are realistic. In this case, the use of equation (2) would
definitely lead to a conclusion that the construction of triangles for either of the two packings
is not random. This is obviously unreasonable, if not absurd. This is because equation (2)
has not taken into account the geometrical constraint as discussed above. Obviously, the
analysis based on the maximum entropy method can overcome this problem and can be
used generally, though it involves greater numerical effort in problem solving.

4.2. Randomness of the Delaunay tessellation at network level

The randomness at the network level can be accessed using a similar method to the above
discussion. Here the measured triangle frequency distribution is used as the prescribed
information to calculate the fractional number of connections between theith andj th types
of trianglesNij according to equation (5). This calculatedNc

ij can then be compared with
the measuredNm

ij to evaluate the randomness at the network level.
For the packing of an infinitely large number of discs, a largen will give a largem

and hence an accurate classification of the types of triangles, which in turn leads to a
more precise discussion of the randomness of the packing structure. However, because of
the limited computing capacity and time, the number of discs generated in a packing is
always limited. This is particularly true when a collective simulation algorithm, e.g. theMP

algorithm used here, is employed. In this case, the result of randomness is strongly affected
by the value ofn, i.e. the number of edge intervals. This effect can be found from the
results at both the individual and network levels but is much more significant for the latter,
because the types of connection increase sharply with the number of intervals. To provide a
sound base for the analysis at network level this effect was studied in detail with reference
to theDT packing, i.e. the pure Delaunay tessellation, as described earlier.

As mentioned above, the difference betweenNc
ij and Nm

ij and, in particular,εij =
|Nc

ij − Nm
ij |, may be used as a measure of the degree of randomness. For a given number

of edge intervalsn, εij varies with i and j (6 i 6 j 6 n). For simplicity, their overall
average,̄ε, was used in the present analysis. Figure 6 shows the variation of thisε̄ with
the number of discs (points for theDT packing) for different edge intervals. It appears that
the number of discs should be larger than 6000 in order to obtain a stableε̄ and hence a
statistically meaningful result. Moreover, since this stableε̄ also varies with the number of
intervals, to obtain the comparable results from different simulation algorithms, the number
of edge intervals should be the same. Therefore, the number of edge intervals used in this
work is constant and equal to 4 while the number of discs is greater than 6000. This gives
20 types of triangles and 400 types of connections between triangles.
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Figure 6. Variation of ε̄ with the
number of discs for different edge
intervals for theDT packing.

Figure 7. Comparison between (a) measured and (b)
calculatedNij for the DT packing.

Figure 7 shows the comparison between the measured and calculatedNij for the DT

packing for the 20 types of triangles. It appears that the calculatedNc
ij match the measured

Nm
ij well. This good agreement can be seen from the direct comparison betweenNm

ij andNc
ij

in figure 8. These results indicate that the Delaunay tessellation, as a subdivision method
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Figure 8. Direct comparison betweenNm
ij and Nc

ij

for the DT packing.

used to configurate a disc packing into a triangular network, would provide a very high
degree of randomness at the network level which is expected to be very close to that of
perfect randomness. The results also suggest that the Delaunay tessellation, when applied
to other packings obtained by other simulation algorithms, should not affect the randomness
at the network level much.

The above remarks stem from the analysis of the absolute difference betweenNc
ij and

Nm
ij . As Nij is actually a frequency distribution, the difference betweenNc

ij and Nm
ij can

also be analysed in terms of a statistical test, e.g. the so-calledχ2-test which is widely used
in testing the agreement between two distributions. In doing so, one would find that the
measured and calculatedNij are quite different. This results from the fact that by definition,
χ2 is proportional to the number of triangles, which is extremely large here (about 105).
Consequently, a practically insignificant difference betweenNc

ij and Nm
ij may result in a

largeχ2 value and a failure in this statistical test. Mellor reached a similar conclusion in
analysing Finney’s3D packing structure by this test [16].

However, it should be pointed out that the use ofε̄ or another statistical index should
not affect the final outcome since our aim was to evaluate the relative rather than absolute
randomness for different types of packings. In this case, the Delaunay tessellation just
provides a reference system which should have a maximum degree of randomness at network
level. The analysis of the randomness of other packings can then be made by reference to
the DT packing, as given below.

4.3. Randomness of theRSA, RPG and MP packings at network level

In this section we will consider the randomness of connections between triangles, i.e.
the randomness at the network level, for theRSA, RPG and MP packings. Our analysis
is mainly made using the same treatments as those for theDT packing. Figures 9 and
10 show the comparison between the measured and calculatedNij for the RSA and RPG

packings, respectively. For theRSA packing, the distribution function ofNij , calculated by
equation (5), matches those measured well. The good agreement between the calculated
and measuredNij can be seen from their direct comparison given in figure 11. In fact,
the degree of randomness at the network level for theRSA packing is comparable with that
for the DT packing. However, it appears that theRPG packing is a relatively worse random
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Figure 9. Comparison between (a) measured and (b)
calculatedNij for the RSA packing.

Figure 10. Comparison between (a) measured and (b)
calculatedNij for the RPG packing.

packing at this level, though there is still general agreement between the calculated and
measuredNij , as seen from figure 10.

Figure 12 plots the average errorε̄ as a function of packing method. Obviously, the best
randomness is obtained for theDT packing matched with theRSA packing, and the worst
randomness corresponds to theRPG packing. The relatively low degree of randomness with
the RPGpacking is due to the need to meet the stability requirement imposed by the gravity,
i.e. the packing constraints as discussed above.

Figure 13 shows the measured and calculatedNij for the MP packing with a packing
density of 0.536. Since the number of discs used in this work was 1200 and less than
6000, only two types of edges were classified, giving four types of triangles and 16 types
of connection. The similarity between the calculated and measured results suggests that
the packing structure of this particularMP packing is approximately random at the network
level. Further analysis of theMP packing was also carried out by comparing its average
ε̄ to that of theRSA packing composed of the same number of discs. It was found that
the ε̄ value is 0.6% for theMP packing and 0.3% for theRSA packing, so that theRSA

algorithm generates a packing of discs more random than theMP algorithm. Note that the
MP algorithm can generate packings with packing density varying from infinitely small to
0.906. It is not clear how this will affect the randomness. As noted above, this will be
studied in detail in the future. However, the present comparison between theMP and RSA



Effect of packing method on the randomness of disc packings 2683

Figure 11. Direct comparison betweenNm
ij

andNc
ij for the RSA packing.

Figure 12. Plot of ε̄ as a function of packing
method.

Figure 13. Comparison between (a) measured and (b) calculatedNij for the MP packing.

packings clearly indicates that the packing density is not as dominant as the packing method
in determining the randomness of a disc packing.
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5. Conclusions

The randomness of disc packings, generated by different computer simulation algorithms
such as the random sequential adsorption (RSA), the random packing under gravity (RPG) and
the Mason packing (MP) which gives a packing density close to that of theRSA packing, has
been analysed, based on the Delaunay tessellation. The degree of randomness is evaluated at
two levels, i.e. the randomness at individual subunit level which relates to the construction
of individual triangles from a given triangle frequency distribution and the randomness
at network level which relates to the connection between triangles from a given triangle
frequency distribution. The method of analysis, as originally used by Mellor [16], has been
rationalized and generalized for multiple types of edges and triangles. In particular, the
maximum entropy method has been employed in order to properly take into account the
geometrical constraint in forming a packing. The Delaunay tessellation itself is analysed
and its almost perfect randomness at the two levels is demonstrated, which verifies the
proposed approach and provides a random reference system for the analysis of the other
packings. It is found that (i) the construction of a triangle subunit is not random for the
RSA, MP and RPG packings, with the degree of randomness decreasing from theRSA to
MP and then toRPG packing; (ii) the connection of triangular subunits in the network is
essentially random for theRSA packing, acceptable for theMP packing, and not good for
the RPG packing. Different packing methods impose different packing constraints which in
turn affect the degree of randomness. It is concluded that packing method is an important
factor governing the randomness of disc packings.

Finally, we would like to point out that understanding the randomness at various levels is
important in the modelling of the relationship between micro- and macrostructural properties
for practical application. It is obvious that this modelling can be readily made if a packing
is random at all levels. However, perfect random packing is rarely found in reality.
Identification of the non-randomness at various levels may lead to the determination of
the ‘minimum’ information required to properly characterize a particle/disc packing. A
predictive model can therefore be developed on the basis of this minimum information.
This would give a promising approach to the mathematical description of the packing of
particles or discs.
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